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1.    Ir f    auction 

Let 

<ä(i (i.i) A = [a^] (1,J = 1,..., n) 

be a matrix of order n with elements In a field F 

and let 

(1.2) X = [xl1] (1,J = 1,..., n) 

be the matrix of order n whose elements are n Independent Indeterminates 

over F. We call the Hadamard product 

(1-3) M = A * X = [^J^J 

the formal Incidence matrix associated with A. The elements of M belong 

to the polynomial ring i 

(1.U) F* = P[x11,x12,..., x^]. 

The matrix A is fully Indecomposable provided that It does not contain a 

zero submatrlx of size r by n - r. We now state at the outset one of our 

main conclusions. 
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Theorem 1.1    Let A be a matrix of order n with elements In a field 

F and let M = A » X be the formal Incidence matrix associated with A. 

Suppose that det(M) / 0.    Then A Is fully Indecomposable If and only  if 

det(M) is_ an Irreducible polynomlfil In F*. 

In what follows we develop some of the basic properties of formal 

incidence matrices.    We also summarize some recent investigations on 

matrices whose elements are linear forms In t Independent Indetenninates 

over F.    Our results are of interest both from the algebraic and com- 

binatorial points of view. 

The motivation for much of this material appears In the much earlier 

Investlgatlcns of Kantor [8],  FVobenius [3], and Schur [l6].    These author:; 

fetudy certain determinantal properties of matrices whose elements are 

linear forms in independent variables over tne complex field.    A more 

recent account of this theory is available in [10]. 

Despite these early origins the subject matter of this paper is still 

very much in its infancy1.    However, we anticipate that matrices in con- 

Junction with Indetenninates will play an increasingly Important role in 

the study of various combinjatorial problems. 

; 

2.    The Formal Incidence Matrix 

In what follows we extend in an obvious way some familiar terminology 

for (0,1)-matrices to matrlce» with elements in an arbitrary field»    Let 

(2i.l) A = [a.,] (1 = 1,..., n;  J = 1,..., n) 

be a matrix of size m by n with elements in a field F.'   We may regard A 

aH^fiflM matmmm , B  ! !    — 
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as the Incidence matrix for o subsets of an n-set. Here the nonzero 

elements of F play the role of 1's In the standard (0, l)-matrlx repre- 

sentation. A line of A denotes a row or a column of A.  A cover of A 

is a set of lines of A that contain (or cover) all of the nonzero 

elements of A. The cover is minimal provided that the number of lines 

in the cover 1c minimal. The term rank of A is the maximal number of 

nonzero elements of A with no two of the elements on a line. The 

familiar Frobenius-König theorem asserts that the term rrjik of A and 

the number of lines in a minimal cover are equal. 

Let 

(2.2) X = [x^] (l = 1, ...| m; J = 1,..., n) 

be the matrix of size m by n whose elements are an independent indeterminates 

over F.    We call the Hadamard product 

(2.3) M = A • X = [a^j] 

the formal incidence matrix associated with A.    The elements of M belong 

to the polynomial ring 

(2.i0 F* = Ftx^x^,..., x^]. 

The formal incidence matrix has been very useful in various combi- 

natorial investigations [2, k,  11, 12, 18]. The following observation 

of Edmonds [k]  equates an important combinatorial invariant of A with 

an algebraic Invariant of M. The term rank of A ^s equal to the rank 

of M. We note that a submatrix of M of order r has a nonzero determinant 

«Mwai m 
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If and only If the corresponding subrnatrlx of M has term rank r. But 

the rank of a matrix is the maximal order of a square subrnatrlx vlth a 

nonzero determinant and hence the conclusion follows. 

We recall that a square matrix cf order n with elements in F is 

fully indecomposable provided that it does not contain a zero submatrix 

of size r by n - r. A fully indecomposable matrix does not have a cover 

of n lines apart from the two obvious covers of n rows and n columns. 

3. Preliminary Lemmas 

We first investigate some special properties concerning the fac- 

torization of homogeneous polynomials. Again let 

(3-1) X = [x^] (i,J = 1,..., n) 

2 
be the matrix of order n whoae elements are n independent indeterrainates 

over P. The associated polynomial ring is now 

(3-2) F* = F[x11,x12,..., x^]. 

I^et X denote a submatrix of X of order r. We form products of the in- 

determinates of X . These products each contain r indeterminates of X r r 

with no two of the indeterminates on a line of X  .    We designate these 

u = r.' products by 

(3-3) y^,---, yu- 

We are concerned with polynomials of the form 

(3.M f = 

u 
r 
/_. 

i=i 

a.y I'I' 
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where the coefficients are in F and not all of the a.  are zero.    We say 

that the polynomial f has an indeterminate pattern based on X  .    All of 

the polynomials with an indeterminate pattern based on X    are homogeneour, 

and of degree r over F.    Two well known polynomials with an indeterminate 

pattern based on X    are det(X )  and per(X ).    The polynomials with an 

indeterminate pattern based on X are of the form 

(3 »5) f = la /,x /   vX,   /.v"» x    /   x. v     y/ o(l),...,  a(n)  1o(1) na(n)' 

where c ranges over the nl  permutations of 1,...,  n. 

Two submatrices B and C of orders r and n - r, respectively,  of a 

matrix A of order n are called complementary provided that    they are 

formed from complementary sets of lines of A.    The following lemma is of 

some  Intrinsic interest. 

Lemma 3 • T •    Let h ^e a polynomial with an indeterminate pattern 

based on X and suppose that in F    w have 

(3-6) h = fg, 

where f and g are polynomials of positive degrees r and n - r, respective- 

ly.    Then f and g are polynomials vlth indeterminate patterns based on 

X    and X , respectively^ where X    and X are complementary sub- 

matrices of X of orders r and n - r, respectively. 

Proof.    We write 

(3-7)     f = ^ + •••+fp,      g=g1+---+g0, 

In (3.7) each term f. of f is required to be   a nonzero scalar multiple 

h = h. +  • • • 
+ v 

^M 
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of a product of indetenninates and f. and f. eure not scalar multiples 

for 1 / J.    The same restrictions are placed on the terms g.  of R and 

h.  of h.    We let F. . denote the integral domain F   with the  indeterminate 

x      deleted. 

We assert that f and g do not contain an indeterminate x  in coin- 

mon. If this were the case, then hoth f and g would he polynomials in 

♦ 
x., of degree at least 1 over F. .. But this contradicts the fact that 

» 
h is a polynomial in x . of degree at most 1 over F. .. Hence it follows 

that tjg,  and f, g. do not contain identical indeterminates unless both 

i = k and J = t. Thus there is no combining of terms in the product fg 

and we have 

(3-8) T = oo. 

It follows that f and g are homogeneous polynomials of degrees r and 

n - r, respectively. 

A typical term f. of f appears in h and has an indeterminate pattern 

based on a certain submatrix X' of X. It follows that a typical term 

g. of g must have ar indeterminate pattern based on the complementary 

submatrix X of X with respect to X. This is the case because f g is 

a term of h and h consists only of terms with an indeterminate pattern based 

or, X. Finally, we assert that a second term f. of f must also have an 

indeterminate pattern based on X'. This is because g. already has its 

i^Mama^aammBKKttmm mm 
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indeterminate pattern based on X .    Hence X' = X   and X   »= X r n - r 

Thiij proves the lennna. 

The following lennna is used frequently in the study of fully in- 

decomposable matrices [}].    We include the short argument for completeness. 

Lemma 3.2.    Let A be a matrix of order n with elements in a field F 

and let M = A # X be the formal incidence matrix associated with A.    Let 

M. . denote the subnatrlx of M obtained by the deletlcn of row i and column 

J of M.    Suppose that A is fully Indecomposable♦    Then 

(3-9) det(M1J) ^ 0 (1,J = 1,   ...,  n). 

Proof.    Suppose that det(M.,) » 0 for some i and J.    Then 

(3.10) rank(M    ) B term rankCM^) < n - 2. 

It follows from the Probenius-König theorem that M.. has a cover of n - 2 

lines. These n - 2 lines plus the deleted row and column give a cover of 

A of n lines. This cover implies that A is not fully indecomposable. 

k.     The Main Theorems 

We now state and prove the theorem cited in Section 1. 

Theorem k,}.   Let A be a matrix of order n with elements in a field 

F and let M = A » X be the formal incidence matrix associated with A. 

Suppose that det(M) j 0« Then A is fully indecomposable if and only if 

det(M) is an irreducible polynomial in P . 

■ •»•W.H,«^|,tUä]i,^ 
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Proof. We take as our hypotheals that det(M) Is an Irreducible 

polynomial In F . If the matrix A were not fully Indecomposable, then 

there would exist permutation matrices P and Q such that 

(U.I) FMQ 
M 0 ' 

«2 

where M1 and M   are matrlcee of orders r and n - r, respectively,  and 0 

is a sero matrix of size r by n - r.    But then 

(U.2) det(M) = idetCM^detCMg), 

and this contradicts the hypothesis that det(M) is irreducible in F • 

Next we take as our hypothesis that the matrix A is fully indecom- 

posable. Suppose that det(M) Is reducible. Then we have 

(U.3) det(M) » fg. 

Now det(M) Is a polynomial with an Indeterminate pattern based on X. 

Hence by Lemma S«! there exist complementary submatrices X   and X 

of X of orders r and n - r, respectively,  such that f and g have indetermi- 

nate patterns based on X   and X , respectively.    Thus there exist 
r    n - r 

permutation matrices P and Q such that 

(UJO PAQ = 
^ 

mq = 
M. 

*2 

where 

(U.5) M1 = A1 # Xr, M^ = 
^^n 

MMMI     ^Mm^t^mmM 
-'-■■ 
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Let us suppose that a nonzero element of IWQ does not lie within M. or 

M-. Then by Lenroa 3«2 it follows that the Indeterminate in this position 

must appear in det(M). But this contradicts (U.3), where f and g have 

Indeterminate patterns based on X and X    , retpectlvely. Thus the 
r    n - r 

asterisks in {k.k)  correspond to zero matrices and this contradicts the 

hypothesis that A is fully Indecomposable. 

Let A be a matrix of order n with elements in F and let M = A * X 

be the formal Incidence matrix associated with A. Suppose that det(M) 4  0- 

Then it follows that there exist permutation matrices P and Q such that 

(U.6) PAQ 

0  • • • 

A   t • • 
^2 

0 

0 

♦       ...     ^ 

where the matrices A., A-,  ..., A   are fully indecomposable.    These 

matrices are called the fully indecomposable components of A.    The pre^- 

ceding discussion implies the following theorem of Dulmage and Mendelsohn 

C1,   31. 

Theorem k.2.    Let A be a matrix of order n with elements in a ^xeld 

F and let M = A » X be the formal Incidence matrix associated with A. 

Suppose that det(M) ^ 0. Then the fully Indecomposable components of A 

are unique apart from order and row and column permutations within com- 

ponents . 

mmm HMMH I ■ 
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Proof. Suppose that A., ..., A and B., ..., B are two sets of 

fully Indecomposable components of A. Then hy Theorem U.I we have that 

(1;.7) det(M) * ±t]   •" tr ^ ±g]   •" &s, 

where f. and g eure irreducible polynomials with indeterminate patte/ns 
« 

based on the appropriate submatrices of X. But F is a unique factori- 

zation domain and this means that r = s and the f. and the g are the 

same apart from order and scalar factors. But then the fully indecom- 

posable components A. and B. are the sane apart from order and row and 

column permutations within components. 
i 

Let A be a fully indecomposable matrix of order n with elements in 

F and let M = A ♦ X be the formal incidence matrix associated with A. 

A very natural problem emerges at this point, namely, the determination 

of all matrices A with the same irreducible polynomial det(M).    This 

problem is solved for us by the following theorem of Sinkhorn and Knopp 
i 

[1?].    (Sinkhorn and Knbpp state their result for nonnegative real ma- 

trices.    But an Inspection of their. proof shows that the result holds 

tor matrices with elements in an arbitrary field.)    A diagonal product 

of a matrix A of order n is a product of n elements of A with no two 

of, the elements on a line. 

^leorem U.3.:   Let A be a fully indecomposable matrix of order n 

with elements in a field F.   Suppose that all of the nonzero diagonal 

products of A are equal.    Then there exists a unique matrix B of order 

n with nonzero elements and of rank one such that b. . = a.. whenever 

&ij ^ 0- 

fflUSg^^^ ,. J............... ,      imiiMiiti^m"-iiiiiiii^^    .. """""""   vmumm 
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The preceding theorem of Sinkhom and Kuopp implies the following. 

Theorem k.k.    Let A and B he fully indecomposahle matrices of order 

n vlth elements  In a field F and let M = A « X and N = B » X be the 

formal incidence matrices associated with A and B, respectively.    Sup- 

pose that 

{k.8) det(M) - c det(N) ^ 0, 

where c is a scalar in F.   Then there exist diagonal matrices D and E 

with elements in F such that 

(1+.9) DAE « B. 

Proof.    The hypotheses of the theorem and Lemma 3-2 imply that 

a  . j^ 0 if and only if b.. ^ 0.    We now form the matrix 

(^•10) C = [ajjb^], 

where in (U.10) a., iß the inverse of a  for a. . ^ 0 and all of the 
IJ Xj Xj 

remaining elements of C are zero.    Then {k.8) implies that all of the 

nonzero diagonal products of C cure equal.    Hence we may apply the 

theorem of Sinkhorn and Knopp to the fully indecomposable matrix C. 

This tells us that there exist nonzero elements d...... d   and 
i     n 

e,..... e in F such that r  ' n 

whenever a" b  y-' 0. Hence it follows that 

(I*.12) d^jCj . bij (i,J = 1, ..., n). 

'r-iiTliiiilitiHillllMitf       inn   nimUnifiHinini.i r i  r, .^MBiiMiiiia^MaaMMMil 
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But these eqiiations are the sane as {k.9). 

3'    Concluding Remarks 

The fomal incidence matrix seems ideally suited for the study of 

comhlnatorial prohlems related to transversal theory [11]. But matrices 

with indeterminate elements are also applicable to other problems of 

great combinatorial interest. We discuss briefly a matrix equation 

dealing with set intersections. Let A and P be matrices of sizes m 

by t and t by n, respectively, with elements in F. We now disregard 

our previous notation and let 

(5.1) X = diagtx^..., xj, 

where x^..., x are t independent indeterminates over F. Then 

(5.2) AXB = Y 

Is a matrix of size m by n such that every element of Y is a linear 

form in x.,..., x over F. Ryser [151 has established the following 

theorem concerning the matrix equation (5.2). 

Tbearem 5• 1 • Let Y be a matrix of size m b^ n such that every 

element of Y jjs a linear form in x.,..., x over F and let y.;. • •, y 

denote the products of x.,..., x. taken r at a time. We assume that 

the fixed integer r satisfies 

(5.3) 2 ^ r ^ rar*(Y) - 2 

and that every element of the rth compound matrix C (Y) of Y is a linear 

form in y.,..., y    over F.    Then there exist matrices A and B of sizes 

m b^ t aai t Ij^ n, respectively, with elements In F such that 

.^^MMMMMHEM 
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(5.U) AXB = Y. 

We remark that Theorem 5-1  Is also valid with (5«3) replaced by 

the requirements 

(5.5) 2 < r = rank(Y) - 1 and t = rank(Y). 

There has been considerable Interest of late in intersection proper- 

ties of finite sets [6,  7, 9, 13,   1^].    The matrix equation (5.2) is well 

suited for the study of such problems.    For example,  suppose that A is a 

T (0, l)-iBatrix of size m by t and that B = A    is the transpose of the 

matrix A.    Then (5-2) assumes the form 

(5.6) AXAT » Y, 

where Y is a synmetric matrix of order m.    Moreover,  if A is regarded as 

the incidence matrix for subsets S-,..., S   of S =  (x.,..., x }, then the 
ID IT/ 

matrix Y has in its (l^j) position the sum of the Indeterminates in 

S   0 S .    It follows that    the matrix Y gives a complete description 

of the intersection patterns S. 0 S.. Ryser [1U] has used this obser- 

vation for the study of certain combinatorial properties of set inter- 

sections.    But all of these topics and especially the combinatorial 

applications hold great potential for further study. 
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